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BENCHMARKING THE IBM 3090 W’lTH \’EC_OR FACI.LI H

Computing and Coclmunications h~’ision
1AMAlammi Natmnal l~boralory

I. lNTRODtMTT’TO?J

l}IC Iil\l 3(YW wllh \“ec~or FacIIIty IS 111%1’sfirst foray Inlo Ihc sclenilfic vwtor processor
marhci since (“rav ~ese~rch ln~. created thai marhct in the mio 1970s The appearance of ihe

30Y() both Irgl[lrnlzes twlor processing 10 thr masses and serves nollce ICI (;ray [hat IB?l intends to

be a r~al presmc? In the high-end scientific computing arena. !I IS, Ihmcfort, nalural that wc at

].(.)s Altimm drf krry Inlerestcd In the perlr)rmancr of thi+ mathine. oscr [hc past ‘eu’ months. we
have worhrd w I[h lll\l to otmain an accurat? benchmark of the machlnc. Tht 3090 IS a complex,
shtirrd.memory, mulllpro~cssc)r SySIC~, and v.e have utt~mprd 10 address al Icast the mapr

~ornponcnls 01 the s}stpm performance In [hm Iwnchmarh: scalar speed. vector sped, compiler

perf(lrrrunc? and Ihr \lultltasklng ]’aclllty. .4s usual. thr Iwmhmbrks art Intended 10 measurr

t(~mputatmnal perl(’rm~nLr on a dedicated system. In pr)t~ular. this mean% no 1 “() or throughput
mmsurtmrnis u crt made

\\’e urge [he r~~tjer tO h~p thr Io]]tlwlng p)lnts In mind u hilt r?adlng this rqwrl. f’irst. thr

3090” IS a genera l-purpse, commercial mdlnlrame II is not mlrnded to he a state-of -~he-art
s~wn!lfic super~rrmpul?r. Ilriwever. IL ij Inwnded 10 tw a high performtinrr computer. so 11331 has
ti)n(cnlrafed on mdklng IIS Scular ~rfnrmance very good, This has hem accomplished by

rv(}lulll~nar~. no[ rpvt~lullonary, drv~]t~pm~n[ I rom prevmus Ill\! malnl ram~, the 30&X serws.

I“hc swoml “pllnl to Leer In rnlnd is that Ihr \“cclor l-ucllily IS an add-on p~t of hardware. “rhe
30’)() u u~ ~l?sl~ned for lhc commrrclat martictplacr u’herr rpa%onablp s~d IS to be obtained al

rmsl)ndt)l~ cost. “l-h? design of thr \’wtor I:aclllty was driven by thr need [o fil in with ●xisting

harciu~rr, no[ by the deslr~ 10 build a su~rfasl vwtor machlrw In fmi. the vector l:acllily
in~ rrases Ihc ~OW) COSI hy (ml} 10 15%, whllr ~rlormanw irxrcascs may br much greater.

In this rrport. WIC WI]] first drscrihe ihc har{jwarc and sofl~arp currpntly comprising the 3090”

~vslem X?xt. w? WIII dIsuuss lhc ohjcctItFs and methodology d our Iwnchmarkmg trlr 10
(iulthrrshurg, $farylancj, and Kingston, Xpw York, We then present th? actual Iwnchmark results.

along with the comparahlr nun, twrs Itlr lhr (“R,4}’ X 111’. A dlscuwmn 01 [h? wsults follows.

along u’ith an analysm ol hardwar~ and compler fr~tures and performance. A brief seclmn
dcscritws thr rpsults of thr hlulll!askln~ I;acllity hwwhrnarh and [h? mullllasklng prlmltlvw.
]’lnallv, WF presvnl our tx)ncluswns (m [he sLIItabIIIty 01 thm mnchlnc I or our wtwk li)atl.



11. IBR1 3090 SYSTEN1 ARCHITECTURE

Currenlly, lhe IH31 3090” is available In l{Iur m,wiels: [ht slng,le-processor %lodcls 150 and “
180, th~ d} adw hll~del 200, and the four-processor Ilcdel W(). Since the single-processor models
lack multitasking capabl]lty, we WI] I ~~es~rlhe on]} lhe multiprocessor models.

A. The 3090 Central Procrssor

The 3090 central processor has an IR.5 ns cycle ~lme and I!, constructed with C’mllter coupled

logic twhnology nnd IIIU’s thermal conduclmn module pac Laglng The processor is microcode

controlled and consists 01 several ●lements, The instruction element decodes instructions,

calculates addresses. sends fetch requews 10 storage control, and provides th~ ●xecution element
with operation codes, operands. and operand addresses. Th~ rxeculmn element processes

Instruclmns and interrupts, Inltiales conlro] funcllons. and performs the scalar loglcal and

arithmetic compulallons. The Inslructlrm and txecutmn elements arc plpelined and operate in

parallel. ,4 Ihird rlemenl, lh~ conlro] storag~ element. provides Ihe inslruc(lon and execution
elements u t[h mlcrocotlt dnd conlalns control storage irnd [he prmessor r?glsters. Einally, a buffer

control el?ment handles ail main memor~ requesls and crmlatns the 64-h byle high -spml cache,

cachr management harduare, ~nd i Iriual memory supptrt hardwarr.

B. Tblemory Hirrnrchy

C. llw 3090 I“wtor Facility

‘I”hr \’rttt\r l’ticIIIIv IS a field upgra(lahlr a(idl[lon to Ihf M)’)() tmrlral prowwr. Any or all of

ihr procewors In a .1OOOsvslfm may haw attached f’~ciw 1 acllllles, and ●ach \“ec LoI l:aCIII’. V
s~rvfi as an ?xlcnsmn 01 the processors’ instruclllln and rheculmn FI?ments Ilata 1)’pes support +

In hardware ar? Ivnary ( fixed poinl) and 32 und 04 ht flt}atlng pmnl numhrrs, Thcrr ar? sixleen

.!2-hll vwior reglstrrs, ?ach containing 12R ?l~mmts, u hlch may be wnfigurwi as ~ight 64-hil
rrglsters, Thmr r?gmters read I rom and wr,[? 10 the cuchc ‘1’lmre arr t wl~ v~tor i urwtmnal units:
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ddcl I~JgIcal and multlply dI\Ide (’~]lnpounci mul[]pl} and add. mult]ply and subtrac[, and
mult]pl~ and accumulate ]nstructlt}ns drl~e bc~th functwnal units generalmg IWO floaling-polnl
results per C}OCk for an absolute pe:ih rate 01 103 lll:l.OPS* per processor. A total Of 171 new .

tnstrucllons are po~ided for driving the t’ector Fa~lllty. These !nstructlons Include vector add,

subtracl, multlply, dli ICie, and compare. operands may be In storage or in vector or scalar
reg]sters, and results go to t ector or sciilar registers. .+ddressing modes for vectors ]n storage
Include constant stride. lndlrect addressing (vector of indices), and masked selection. In addition to

Ihese and the compound instructions, there are vector counl instructions and save, restore. and
clear vector reg]ster instructions. A des]gn goal of the \’ettor Faciltty was to provide a maximum
of four Llrnes performance Increase over the 3090” scalar speeds.

D. Tbe 1/0 Subsystem

The 3090” \lodcl 200” Frov]cies 32 ({~r optmnal]y .40 or 48) 1/() channels; the ?tIodcl 400
provides ~wlce Ihose numbers l’p 10 four channels (llodel 200) or eight channels (!tlodel 400)
may be c~~nf]gured for by’te mult]plexlng. .All others operate In block-multiplex mode. Block-
TTi U1ll F)t’X operiitlon results In a miixlm urn dat~ lriinsfer rate of 3 \lbyte/s. The channels are
controlled h>’ a channel control element ((’(’E). which IS a separate microcode-controlled processor.
“The \l~)del 2(N) has one (-(V’. the 400 has two (’(%. The (“CE allows any processor to access any
channel under s!”stem software control. l:inally’, a s) ’slem control element arbitrates storage
requests among the cen~riil processors and the 1 () subsyslem.

111. lBfil 3090 SOFTW”ARE

Two operating s~s[ems are avalliible for the 3090. 31\’S ‘SP (%lultlple \’irtual System/
Sy’slem i’rmiuct) and \“3! ‘S]) ]{i)() (~’ir~ual Ifachlne System product. lllgh- Performance option).
Time Sh~r:ng optlori (“I’S()) IS aiali~ble lor 31\’S to proi’ide Intertictlve ctipabillt]es \l\’S is
prlmarll) batch oriented ~nd system ct)mmunlctit]on IS b} means of .foti (Tontrol I.anguage. \’%1

supp~rls a Variety of gues~, (~peratlng ~~stems lncludlng (Tonversalmnal 310nitor System (CNM)O an
lnlera~l]ve \lrtual c) fY’rilllrl~, s~’stem

Supporting si)f twiire Inc Iude~ i] h(~[ sp(~i antil}zer (profiler), ii st~urce level lnl~ractlvc

(iebugg?r, un(f an cxtcnslvr w-t (II mathemnllcal ,wbroutlnes called the l{ngln~erlng and Scl?nttfic
Suhr(~utinc I,ibrnrv ( I SS1. ) I SS1 ln~lu(fes single nn(f (f(~ublc preclsl(ln routlnps an(l vrct,)r and

sctilur versl(m:,. Subroutlnw Inclu(fe IInwr equatmn wlutw cl~rn~yslem aniilvsts. slgnul

processing ttpplicatmtwl iintf riln(fom number genera! Ion.
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iv. THE BE!S(THNIARKL!4G TRIP

on .~prj] 15-lb, 1936. members of the C-3 benchmark team performed tests on the IBll “
3090”’200 al the 1F331\~aShing[OnSystemsCenter in Ga]thersburg. llaryland. The standard

Los .Alamos benchmark se[ was run on a two-processor system with b4 Mbytes of memory using
the 111’S opera~lng sjstcm. .+ description of the programs In the set cart be found in Reference 1.
on April Ik. further tesls were run at IBX! in Kingston, Xew York. The pwpcrse of this second

phtise v as to test 1B31”s Xlullltasklng JacIllty (XITF) and also to tnvestlgate the effect of compiler
d]rectlves for \!ectorizatton available oniy on 2 verston of the compiler at Kingston. The machine at
Kingston was also a 3090” ‘2(M) ,-lt bolh s]tes, we ran on dedicated systems using ~’ersion 2.1 .()
(January 1986 ) of lhe ForIran Compiler. lf3M perscnnel later ran some of our codes using an older
version of the compl}er (1’ersion 1.1 .() of September 1985); these results are discussed IX1OW. IL

was necessary to use the J“S Fortran ““.AD(DBLP.4D4)”’ compiler option to select 64-b)t floating-
point words on all of ~he (odes.

]n (;al[hersburg, all programs were run In both scalar and \ector mode to cletermlne the effect
of the \“ector [;acl]jt\ on per f~rm~nce, Both sca]ar and vector numbers are reported, ~$’e also

]nvestlgated an additional feature of lhe 3090 architecture at Gaithersburg’ one of the processors In

the Xlodel 200 has a dlrecl paih from memorj) to IIC cache bj”paswng the sy’stem control element,
w hlch ordlt; arllv handles memory requests, This b!pass is hnow’)1 as thr “fast path” to the
processor’s cach~ Surmlslng that [hts processor uou]d shorn Improved performance In \e{tor
proces\lng, we al[empted lo observe Ihls efiecl b} runn]ng the benchmarks first ulth both
prwewors en~h]ed and then wjlh either one or the other rrocesscr enabled. Me obserked a sllght

degriidiilton tn perf(~rmi-ince (Ims \han 5% ) when twlng only one processor, attributing [hw to the
fti{t Ihii I Ldl]s I(I the dlsiib]ed processor !Iad ttl be rerou~ed back to the enabled processor. \’lrtually
II(I d] flerence In Ilmlng was obserked u hen @l[her processor w as used alone. We conclude thiit use
of the (Ilrect memory to-register path had no sl$nlficiinl effecl on the codes We ran.

Y. BE?JC’HNIARK1?JG RESULTS

A. Stindard llenchm~rks

“Jable 1 shows t]mings in both vector iind scalar mod? for the stnnd;ll,l benchmark set. l’or
c(lmparlw}n purfy}ses, [Imlng> from a single processor 0! a (“R.4}” X-n P/41i {ire given. f: fTR’tlvely!

two levels of vectortztitlon ure ava]lable on the 3090:” l.ev~! 1 performs vect(~rlzatmn at the ‘“loop”
level, while l.ei,el 2 performs vectorizatit)n on a statem~nt-b)~-sta ten~ent Ievcl. All vector timings
f ,]r the s!nn(~ar{j &nr. hmarks on the 3090” were done using vrctor l.?\el 2. ]t sh(~uld be not-d that

the S1311)1 1 code detected h compiler bug when run with vector level 2. Some answ?rs were
Inc[)rrect Sutwequcn( decomposition of the offending loop Into smaller sections produced c’orrwt
answers al l.e\e) 2

1 Scalar 300° ●xrcutlon ~~r(uluct(i results comparuhtc (0 that 01 scalar S 511) rrsults on

pr(}griims H\lh4.4, I]\lh S, }INIL 14, 1131h21 .4, llJlh22, and all cases of S1311’1.1 In
some Instances, the Iwst 3090” results were the vector times, In a Jew lnstanc’es,
howev?r [he best Iil\l numbers wrrr (~l>talne(l I rom scnliir rttns ~ecall that cvcle

times for th? twn machines tire, respectively, IRS ns tor the 3090 and 9.5 ns for t)]?

N-hll), The scnlar tlmw lor IIXIN 11 A an(i illlh 1111 are anomnlouslv S1OW compard
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B31 can explain this anomaly at the

In many cases, scalar and ~ector performance on the 3090” are nearly identical.
(Fxcept}ons ~o this occur on B31K8A1 . B31L1 1A. and 13%f~l IB. ) This is in part ,Iue to
Lhe conservative na~ure of the ]:ortran compiler’s economy analyzer, u’hlch generates
scalar code when ]t cannot determine that ~ector code would be faster or that vector

code definitely would run slower. One example IS long vectors with non-unit stride. In
some of these cases, it mav ‘be true that scalar mode will he faster. This is true because

of the access time needed to obtain data from main memory when the data are not in
cache. (See the discussion of B\l K&.42 below. ) .Another example is for ~ loops with an

unknown number of trips. S;nce scalar mode is faster for short vectors. ~he economy
analyzer will generate scalar code if it cannot determine that the number of trips is
rela~ively large. However, as discussed In Polnl 6 below. different versions of the
compi!er employ different algorithms for making such decisions. With large differences in
performance.

Integer cal( ulatlons as e~ )denced on H71K 1. are performed efTciently on the 3090.

IS an e~per}ment, thecf)mptler (ilrectlve ‘“pR~:~:~:R \-~(”TOR’” M,as used to force

ie~lt~rlzallon ]n one loop of }1}’DR() (results dewrlbed elsewhere m this report), in spite
(I! the f a~[ that the cost ana]i zer predicted s{.a]ar performance would be more optima].

Indeed [he tiode executed m(jre slow’]) In f’ector mode An t’xample of the tjpe of loop
~t~{jlng Ihat ,~cc~rs ojter In [he t>enchn~arh codes, for which the cost analyzer selects

Scalar ~lprrallon. IS gllen belou

1)035 J= I.512
‘I”~:S~~(J~ .= TEST( 2 oJ)

3s (X)s”l’lNf.-’F

.Agaln, the nori-unit stride in mernor} prohibits vectorizatlon of this loop, Deperldlng on

the SIZC of the first dimension of the variable T13’1, successive fetches of 16-word blocks
10 access tht proper ~iil~es of ‘1’1S”]’do not nlttke Yectorlzatlon cost efiectlve.

l)rograms ll!kf K&Al , 1131K 11.4, und Hllh 1 1}1 exhibited chr greztest observed speedup
(2+ ) usln~ iectorllatl~in

Use of the older verslorr of the t’S I;ortriirr compiler produced significant differences In
programs l)\lh 14 nnd f~\lK22 (both highly vmtorlzahie codes) ~’sing \’erst(Jn 1 1.() In
vector mode. llfifK14 r~n In 6,2 s and 13MK22 ran In IA2 s: these tlmlngs represent

about a two- fold speedup over both the s’:aliir mod~ times for both compilers and Ihr
vtctor mode times for the \’trsion 2.1 .() compl]er. ,Apparently, the ntw?r versl{~n of th~
~(~mpl]er was tO & Llsed with exp]lcl: vectorizatlon directives (evm though these })ad not

been Implemented at (ialthersburg) and thus was not as “tiggrmslvc” at vrctorulng RS
wiIs thr older compllrr, f:or rxample. \’rrsli~n I 1 () ~ectorlzed the S4XP}’ ro~t]ne In

II%IK22, uhereas \’erslon 2.1 .() did not

The rlghtrnos[ c(~lumn In “1’able I sh{~ws two entries for’ tuned versmts o! 1151K 14 and
II”wIK22. Times 01 I ,2 and 03 s, respect tvclv, rt-prewnl n speedup 0! 6 7 nnd ;0.() over
tht scular versions, ‘1.IM “tuning” consisted of replacln~ actual bent hmarli code wI[h
calls IO thr 1{SS1 This Ilbrary has urdergrmr extenslv? devell)pmwrt and tuning for Ihe
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3090” archltec~ure and is hand coded In assembly language. lBYI regards it as a key i~em
in the IH\l 3090” product offering. \Vhile nol Iuncd In [he usual sense of recoding
Fortran to take ad~’antage Of architectural features, the codes do indicate the

performance gains that may be obtained by using ESSL. ‘We 00 nol expect that large
portions of our scientific codes can be rew’rltten LO take advantage of ESSL.

overa]], the vectorwatlon speedup observed on the benchmark set was always less than three.
Obtalnlng maximum speedup often Involved recoding of loops to assure contl~uous memory
locations Iiowever, Ihe small gain in performance makes extenslk’e code conversion an
uneconomical practice in most procfuct]on codes,

B. Hydro Results

Hydro 1s a tu o-dimensional I.agrangian hydrodynamics code representing codes Ihat are a
signlficiinl port]on of the Laboratory workload. Two .ersions of the code were run on the IB34
3090”” Ihe s[tindard kerston and a version op!irnlzed for contiguous vector machines in which the
firsl dimension w [he inde~ for the inner loop. In some cases, it is not possible to Interchange the

order of the loops because of dependencies. lBN1 subsequently ran another ~erslon wi[h a number
(If user subr~u~lnes Integrated lnline, with slng]e-c~]urnnarraysmadeintotwo-.cflrnenslona]arravs

the swe of the mesh, and with inline Fortran code substituted for F;ortran Intrlnsics for which the
compiler does no~ generate ~ector code. This version is denoted the revised version. These
modifications enaoled the compiler to b’ectorwe two loops that consume significant time; thus. we

begin [o see some acfvan’age from Ihe vector hardware. Two versions were run on the CRAY
S-31 P/41i (sing] e-processor only). the standard version and an optimwed version with ll; blocks
rep]aced by (~ray intrlnslcs ( necessary because of compiler vectvrlzatlon inadequacies). on the IBhf
machine, compiler direc’. ]~es were applied, but the code ran slower; Cray compiler directives
produced some SFWU gains. In Tuble 11 we report the best scalar and vector execution times for a
problem size of 100” x 100” lor 100 time cycles.

In our hvdro runs we saw onl) modest perft~rmance from the vector hardware. For example.
(,ne rou[lne ran about IOF{ \]ouer in v~clor made than In s~alar mode. The Improvement we did see

~ame from the conversl[~n of one function (SR(’IID[ , a binary search and interpolation routine) to
(,ne-(!lmensl(~nal ~rgunlents, ,A\ des~rlbed above, subst~ntla] modification was required to obta]n

iectorliatl~)n of IWU ma]<~r ](wps, w Ith the lntroductjon of obscure code to accomplish the
iecl~lrl~atl~,n of relatlIel) s[ral~htf(!rwiird code Speeliup Ior ihose loops was about a factor of 2.

f’ulure lmprt~~ ements (o the ct)mp!ler mii} mtike lhese modlficalmns unnrcessar)

C. F3S Results

We a]so ran I~SY, a determlnlstlc particle transport CO(IC,at (iaithersburg, Although i!$~ is

not a parl of the standard benchmark set, wc have been using It as a too] In parallel processing
research and have collected tlmlng data for It on a varlet~’ ~~f machines. The code IS almost entirel~’

scalar, and the time wc obtalncd on the 30’)() IS somtwhat slower than that for the .Y-MP (see ‘~able

Ill ). A slight performance degradation occurred on the 3090” in v~ctor mode (Vector I.evel 1 tind
tector l,eve] 2 produced incvrrect results with tlw compiler we used, ) f’xtimlnatlon of the compiler
(~utpul rtv?a]s v~ctorlzatlon Of u number of sh,)rt ]OOpS (k~ctor length 11 c>r less), which run ftisler

In sc~lar mode,



7-

}-l. D1SCUSS1ON

A. Effects of Cache

We present the resu]ts from B\fK6A 1 and BlfK&.A2 in Tables JV and \’ wi~h the following

caveat: M’hen comparing these results with previous benchmark reports on other machines. keep in
mind that the results for the other machines represent memory -to-memo-y times, while the IENj

3090 times may be for cache-to-cache execut}on. Therefore, we regard these numbers as
considerably inaccurate in describing memory-to-memory performance on the 3090. However.
they do give some indication of the expected performance of codes with similar cache: memory
access characteristics. To see the effect of main memory references, we refer the reader to Table V.
These results are megaflop rates for various leng~h vector operations, with a stride of 23. As an
example, cons)der the first operation, V = t“ + S, where a scalar is added to each element of a vector,

and the result is stored ]nto ~ second vector Note the megaflop rate falls from 11.9S for a vector
length of 100 to ! .66 for a vector lenglh of 200. HOW can this be understood? First, recall that the
cache on lhe 3!odel 200 is 64 hbytes. which in double-precision arithmetic is 8 kwords. Next.
consider how lhe execution Ilmes (and hence the megaflop rates) are obtained for B\f K&A2: an
outer loop runs repeated instances of the inner loop. which does the aclual vector operations. This
is to give a measurab]} long lime for the calculations. Executlo,l time is determined by dividing
the time for hll the outer loops by the number of outer loops. For a stride of 23 and a vector
length of 100.2300 words of memory are required. v;hile [WO such vectors ‘pan 4600 words of
memory. For a vector length of 200, the two vectors span 9200 words of memory. W’e can now
see why the execution rate drops between a vector length of 100 and 200: for the shorter vector,

both vectors fit entirely within cache. Repeated executwns of the inner loop do not require
references to main memory once the cache IS loaded the first time. For vector length of 200,
however, not all of both vectors will fit In memory. Therefore, repeated execution of the outer
loop would require some portion of the cache to be overwritten each time, forcing references to
main memory. The performance cost is apparent.

We also note that the rates for the final ~ector opera~ion, S = S + 1’1(]) * \’2(1), are

anomalously high. \Ve belleve th,s to be due to the ccmpl]er optimizing the rode, so that It is no
longer executing the proper Instruction flow Ior ~alid timings (the results. of course. would sIIII be
correct ).

B. Compiler Performance

(~om},,ler lechnolvg} and philosophy necessarl]j play a ]arge role in determining performance

on a gtven computer. “l”he benchmark codes reported here uere executed for comparison with
results from other computers in essentially an “as-is” mode In most instances, the only allowable
changes were Forlran changes necessary to enable proper executjon of the code.

Because the vector unit on the 3090” is an add-on feature to exlstlng hardware, compatlbilitv

and prlcetperformance ratios superseded absolute performance Issues. L“se of the cache for all
vector operations, rather than a fast, interleaved, main memory, Futs restrictions on the

●ffectiveness of vector lzation, The compiler vectorizes Caut]ousl!+, basing dc:lsions on statistics

from the cost analyzer regarding the most eflicient mode of operatmn for a given code. IBM has
chosen to optlrnize the scalar features of its compiler for the 30~(). (~odes that are essentially scalar
ran with times comparable to scalar execution on the CR A}’ X- fff). Judicious use of the compiler

directives is seen by IBN1 as the rncans by which a user can override the defaults and obtain greater
performance
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-An example of directive use subslanlia]]> lMJ?iOVlng the performance of a code can be seen in
13%IK14, a program consisting primarily of matrix operations. Untuned, the scalar and vector
versions differ by less than 57{ in their execulmn limes because of stride problems (row ace- .

rather Lhan column) inhibiting vector ization. By adding the compiler directive ““PREFER
VECTOR ““ LOthe code in Lhe subro~tine S.4XPY to ignore non-contiguous memory accesses. a
speedup of nearly two was obtained. As wiLh all dhcLives usage. specific knowledge of Lhe
particular code and parameters is necessary.

11 is important to understand the characteristics of an installations workload. Siws whose
codes are primarily scalar in nature would benefil from the greal effort put into scalar optimization
on Lhe 3090. wiLh added performance in Lhose cases where VCCLOrlZ3L10n was eff-ted. Highly
vectorized workloads may involve restructuring programs in order to make use of Lhe restrictive
application of the vector units on this machine..

\’II. THE YS FORTRAN MULTITASKING FACILITY (MTF)

A. Description

orm objective of ~his benchmark trip was to gain some experience with Ihe VS Forman MTF.
The current version of IB31’s multitasking support is primitive. IL allows only for Lask creation

and synchronization vla .. forks” and “joins.. (which are implemented in VS Fortran as .“CALL
DSPKH’. and ““C.+LL SYXC!I,.’ respectively). only the main task may fork sub-tasks. Sa
mutual exclusion or message-passing primitii’es such as locks or events are available. Additionally.
dala sharing between the main program and any of ILS sub-tasks via COMMOX blocks is not
allowed. .411 common daLa must be explicitly passed as parameters in the DSPTCH of the sub-task
rou~ine. Although CO%l\loX block daLa sharing among subprograms within a given sub-task is
allowed, this fact was not made known Lo us until our arrival at Gaithersburg. The reason for
Lhese CO\l\loS block implementation details is that al Lhough the 3090 hardware is iLse]f a
shared-memory architecture, multitasked jobs do not share a common memory space. Rather, an
image of the part of the code Lo be multitashed is reproduced in memory, once for ●ach

instantiation of the sub-task. Therefore, CO\l XloN bloch usage amcng subrou~ines in a sub-task

appears to be iipproxlmately equivalent Lo the Cray Research T,4SK ~ONl!MO.A’, while there is no
LrUe (glObZI]) ~ofil%lo~.”

[n summary, UT note the following incorlveniences’ shortcomings:

1. Programs musl be re-codecl to ●liminate data sharing other lhan ●xplicitly passed

parameters, or whal IiMOUnLS m T.4SK (X) MMOX.

2. .41gorithms must be restructured to ●liminate locks. ●vents, barriers, critical seCLIOnS.

●tc.

3. The program must be physically separated into two files, onc containing the main
program and all subprograms it calls, the other containing the subroutine to be

“’dispatched’. and any subprograms it calls, Both files are compiled and loaded

independently and subsquent]y linked together, We did not ●xplore the question of

calling a given subprogram from both the main and dispatched subroutines

4. “rhe VS Fortran interactive Debug Facility, a good debugger for squential codes, is

incapable of dehuggmg codes utilizing NITl_.
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B. Multitasked Codes

We originally intended to run PIC (Part ic]e in Cell). ESX’ (a discrete ordinates transport o

code), and several examples from the lBll %Iultitasking Facility L’ser’s Guide. however. because of
the MTF limitations described above, the recoded serial \ ●rslon of ESX was never successfully
debugged during the trip, JJ’e did, however, use the M\’S Interactive Debug Facility while
debugging Lhr new serial version. which ●nabled us to find several errors. Joanne Martin of lB.M
Yorktown has provided us with some timings from her mullitasked version of ESX that she
successfully ran on a Model 400 PIC and the example codes did run successfully in multitasked
mode.

~c problem we ●ncountered is that the function we used for measuring @U execution time

did not work during the multitasking runs. Therefore, CPU and wall-clock’ tima for all MTF
runs were obtained from the MY’S timing da~ included in the dayfile for the pb.

c. Plc

The version of PIC we ran using the MTF facillty on the IBll 3090/200 was originally

developed for use with Floating Poinl Systems” array processors. h this algorithm. tht
inltialiation phase can be ‘.cloptcd for xllu]Li-Lhread execution, although this was not done on the
3090. .4fter initialization, the grid is replicated for each processor, and the particle ““push,”
requiring greater than 95% of Ihe total execution time, is done in parallel. At this point the tasks

are synchronized and lhe Poisson equation is solved and electric field for the current iteration is
computed.

The replicaLive grid scheme avoids [he use of a cri~]cal section of code during Lhe parlicle push
and is necessary on the 3090 because of the absence of locks. liowcver, it IS not necessarily the

most efhcwnt parallel PIC algorithm.

The resulls for Iwo problem sets. one processing WOO() parlicles and the other processing

35000 particles on a 32-by-32 grid for 60 time sleps, are lisied in Table \’1, The multitasking

speed up, shown in the third column of Table Vl, is defined as Lhc M\’S CPU time divided by the
MYS wall clock time, .Xote [hat the in!ernal timing in the sequential version of PIC (which is nol

shown in the table) yields a resull of 83.9 s on the 3090/200.” The corresponding time on the

CR.4Y X-Mp/45, using the CFT 1.14 compiler, is approximately 67.0 s (obtained during production

time].

The two-processor speedups for the 35000 and 80000 part icle problems were 1.S6 and 1.75.
respectively, suggesting that multitasking on the 3090 benefils significantly from larger task
gra)~u]arity. We also present times from a four-processor run on a !klodel 400, provided by

Joann~ Martin.

D. IBM Examples

Results obtairwd multitasking several examples from the IB%l Multitasking Facility ~ser”s

Guide me listed in Table VI]. These examples were lmplerrmnLed with an outer loop giving

multi~le tr]ps through the inner loops. The purpose of this was to generate ●nough computaticrn to

take a measurable time. These examples were intended as a simple test of whether MTF worked:
they do not represent codes from our workload.

“Wall clock :Imc IS drfhmd #s Ihc mm] Ilmr rrquirrd 10 crwculc the ,mb.



-1o-

E. FAN

Speedups for ESX are presented In Table 1’111 for the 3090 Mode] 400 and for the CR.AY .
X-!klP/48 on one, two, and four processors. These were obtained from the run times provided by
Joanne Ma. tin for the 3090. Since actual execution times were nol ava)lable for the X-MP. OI]I;{

speedups are reported here ( but see the section on the ser.al version of ES.N above). .Xote that the
X-MP speedups were obtained on an X-YlP~45 running the Cray Operating System (C(M). It
appears the Cray does a somewh~t better job on ESX, but we refrain from speculating on the causes
as this time.

}ml. CONCLUSIONS

A. Scalar Performance

The I13\l 3090 with Ihe \’S Fortran compiler delivers very good scalar performance--
comparable with a CRAY X-31P in many cases. For a predominately scalar workload, we would
expect the lBNI 3090 to deliver excellent performance.

IA %’ector Performance

The IBM 3090 \’ector Faciiitj appears to meet its design goal of delivering increased

performance on some scientific and engineering codes at a small incremental cost. I!owever, because
of the 3090”s cache. a large class of problems will not speed up In vector mode witilout significarit
recoding, Furthermore, the max]mum speedup that can be ~ttained withou[ extensive hand-coding
in assembl)’ language IS in the neighborhood of four times scalar, as opposed to the factors of 10 or

more commonly seen on a Cray. Si)~ce many of the kernels of our large production codes a]e
F,ighly vectorized, we would expect them to run significantly slower on the 3090 than on the CRAY

X-NIP class of machines. Because absolute performance M more important to us thar, cost
effectiveness, we cannot recommend The 3090 with J’ector Facility for our large scientific codes.

c. MIT

N4TF on the 3090” represents at best a first approximation IO a general]~ usable multitasking

environment. The lack of common memory, with the associated passm~ of shared data in
parameter lists, by itself precludes implementing a Froductlon code under NITF. Furthermore, the
lack of all but ~he most rudimentary of synchronization constructs restr]cts its use to a very small
cl~ss of problems in u’hlch performance is not limited by load balanclng, granularity, or data-
sharing issues.

D. Summary

The lBXI 3090 with \’ector Facility IS an extremely interesting machine because It combines

very good scalar performance with enhanced vector and multitasking performance. For many IBNI
installations with a large scientific workload, the 3090, i ector \fTF combination may be ~n ideal
means of increasing throughput at minimum cost. However. as we have noted above, neither the
vector nor multitasking capabilities are sufficiently developed to make the 3090” competitive with

our current worker machines for our large-scale scientific codes.
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Table I. Benchmark Execution Times (s)— —- ——

Program CRAY IBM
Xame x-hw/48 3090

J’ s v s Tuned

1
4.4
5

8.41
11A
IIB
14
21A
22

SIMPLE
32X32
64X64

57.9 56.9
4,3 7.9
23.3 23.1
68.6 515.7
5.7 14.9
5,4 14.5
1.8 11.8
7,2 7.9
9.3 47.5

2.() 5.1
8.4 21.4

16,8
13.5
27.5

294.8
12.4
12.8
11.4

7.5
41,7

4.5
1849

17.4
10,7
26.7

426./$

28.5

30.6

12.0 1.2
7,8
41.9 6.3

96X96 18.2 49,1 39,4 68.6.— ..-——. ——

— _________ ———-.—.—. =-
Table 11. Hydro Execution Times (s)

.—. ——-— —-..——.
——-—

Standard opt]mized Revised

\lachine J’ s v s v s-—-— - —...——— ———. —

113313090” 204,9 204.h lblj 158.() 127.6 1589
(“R.4}’X-\lP/48 S2.4 103.tl 20,8’ 90.8* - .
———. . . . . . .. . . . ..— —
“Slower thtin tlmcs reported for the X-31P benchmarks because of
lhe IIbrarv routines beln~ used cm this muchlnc.——— —. . . . .. .—-. .— . . .._ _ -— -. -—————---. -.— ———-——— —--- —-—. —

—— —- =S

Table 111. ESN Execution Times (s)

Machine \’ s.—— —.———- .--—

IBM 3090 2S.4 23,7
(TRAYX-!MP;411 !7.Q I7.9...... .==?—==.————-------------.-.—---
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Table IV. Results of Brnchmark SAl
—.

RATES (IN MFLOPSI ON IBM 3090 FOR LWAL.AR C(3DE

VECTORS ARE STORED IN CONSECUTIVE LOC.4TIONS

NSTEP= 1

Operation Vector Lcn@lh

?S 50

b.20 6.2?

6.14 b.07

b.93 7.Ob

5.20 5,17

ti. !2 8.37

h.ol 8.01

B.(KI H.(N)

ti,l~ 8,25

7.92 U.11
4..13 4,41

3.ob 3.07

5.4.5 5.57

5.42 5.53

0.4Q 0.49

Iw

6.31

b.29

7.13

5.35

&.sl
hm~j

h,23

h,44

IJ.22

4AM

3.15

1.UH

5.13

0.49

2W

b.30

6.49

7.14

.%51

8.514

h.44

h.44

h.w
~,~7

4.25

3,14

.3,70

5.44

().4Q

It A TES ( IN MFLOl’S I (3N Ithl .WW 1o11 VK.7”( )R {-ODE

VECT(’)RS ARE STORED IN CONSECI’1 IVE LWA”l IONS

N!iTEP - I

Km

6.35

6.13

7.17

5.1 Q

8.06

Umob

7.98

8.05

H.05

2.90

I .92

I ,94

.l.tJe

(),4Q

.. -.— .- —-.-— — .-. — -----
If) 25 50 m .W J(x) Km

~.\.~ .L5K 6.65 ]].7.5 ]4,Q.1 16.9? ]Q.4~ 1V.k:

V.sv ,!,4”8 7.2b 1I .53 14,77 ltJ.70 ~Q,]v ~Q,y

~. \’,\’ 2.M 5.(,.! n ,6(, 1o,wl 11.w 1J..w 1.1.37
\_\.\, 2,70 5,4Q U.47 Io, nl I 1.7Q I.LIH I .!,.!tl

\’. \’ -s”\ .5.41 I (Lw ] ~.v~ 21,b? 2.1.bo 26,41 zb.77

m

6.34

6.41

7.18

%16

tl.03

8.00

7.Q2

B.lb

6.]7

2.43

].78

1.97

.~ 13

0,49

—— --
.XxX9

20.0.1

IV,7V

I .!,b7

I .l.4h

~b.~?

moo

5.13

5.22

4,22

3.56

5.95

b.04

5.b4

b.80

5,V3

2,.!b

1.75

1.U7

.1.1I

o.4k

,—..
,mm

) (),Vb

1().94

h.fd

6.58

1.LIII

4.bl

4.62

4.27

3.62

b.22

b.~

5.56

6.74

5.9.5

2.52

J.77

] .98

3.?7

0.49

y-y*\,~ 4.MI 9,45 I 4,0m 17,5U I h,hH 2(-),?tt Z().w 21.04 11.!7 I I .bl
V-v”v, v 4..\b l!.75 1.L2h ltJ.v4 111.15 20.0.5 20.25 lv.2b 10,74 I 0,8.5

v.s~v. s’v 7,#G 15.96 2479 .51.92 .14,79 .59.(NJ .VJ,s.! JV.82 I v,~4 I Q.f)q

y.vm~,~,y ,5.5(I I0,V3 ]b.41 2U.Q2 22.17 24.2U 2.!.00 I J.64 I .!.2Q I 3m.32

V. V(IN13)*S 2.28 4m.l? b.20 tl.J2 7,2tI .5.14 .J,94 .1.20 1,1s .1.25

V(IND)-V*V 2.09 4.12 h .01 7.(XI b.~7 2.HR 2.lb 2,01 2.(N) 2.07

V(lND)-V(lNl}l tVO\” .!,1(, S,Q.! u,27 6.22 .! ,W I,V2 I.vl I .W1 I ,Ns I ,Q]

V. V4V*V(IN[>) j.~v tlm?l N,N9 9.72 1(1.72 bm15 4.k4 4.fil 4B.5b d.b~

S[ln (’AL~\ 0,47 (),47 0.47 ().47 0.47 0.047 0,46 (),47 0.4fl 0.4#
-.— —-— .--—-— . -_ —— -— ___—-— ——-. .. —-—= ======----= =~
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Tablc V. Results of Benchmark 8A2 for Stride at 23 (MFLOPS)

STEP-23

operation \’ector Length

10 25 50 m ~~ 1(MM

\’-I’+s 3.49 7.30 10,22 11.98 1.66 0.82 0.76
v=s*~’ 3.30 6.96 9.90 11,75 1.6S 0,82 0.76
V-v+v 2.76 5.60 7.83 6.10 0.71 0.59 0.57
v-~.v 2.69 5.49 7.72 6.05 (.).71 0.59 0.57
vmy+s*y 5.30 10,85 15.32 11.93 1,42 1.19 1.14
~*\r*\:+s 4,76 9.41 12.99 10.73 1.40 1.18 1.13
y=l’*\’+\” 4.47 li,94 12.54 2.47 s.05 0.8fi 0.88
\.-y~”+y\. 7,65 15.77 22.47 17,92 2.12 1.7U 1.71
\’=\’.\V+\;m\ 5.59 11,10 15.61 1.96 1,15 1.09 1.09
\“-Y(lxr))-s 2.25 4.29 3,70 2,59 0.6H 0.56 0.55
V(lXD)=\’*\” 1.89 2,99 3.72 1,22 0.50 0.44 0,44
\’(lsD)-\”(lsl))+\’*v 2.98 4.71 4,99 1.15 U.71 0.70 0.69
\.=\”+\’”\’(lxI)) 3.29 4.63 4.98 1.21 0.76 0.71 0,71
SUB r.41.1.s ().49 0.49 0,49 0.49 0,49 0,49 0.51
s-Y+\’l(l)*\’2(1) 71.38 111.36 84.9(5 86,49 77.42 69.70 hh.5fi——. — .-—. ——— — — .—

Table VI. Results of Multitaskin~- the IBM 3090/2fi

.4. 8(NXNI Fart icic lhblem

(W” Tim? (s) \Vall {-lock (K) Spt/dup--..—- . ..- ---- . . . ... . .
Seq~ential Vwslon

...—

(%0 Ilultllasklng Calls) Ml,ti 1.00

4 “rash \“rrswn (4 (“IN’s ) ~7 q 26,6 3.30

3 “I”usk \’crsmn ( 2 (-I)L’S) hfi,7 05,] 1.3fi
2 ‘l”ask I ●rsmn “ 90,4 51,tl 1,75

I ‘1.ask \’crswn “ h7.2 01,2 ().fJb—. .—. — -.———— ——. — —. ——

}{, .Z4W8 f‘arficlc fhblern

(H)~’ Time (s) Wall (Y(}ck (s) sjy@lJ-- —.-—.-— . ——- -——- .-. .. —...- —...-—.--————
tiquemtial \’rrsion 33,2 1.(x)

2 Ta~~ \’rrsion (2 (YUS) 35,4 22.7 ] .!io

I “l”ask \’ersmn “ 33,4 M.n ().91--—-..——. ——-==—-.-.-.=..-.——-.- .— -.——- --- .. —---- —— .. .—. —- . ..—.-.—. -—=.-. -.7—-,.--—-=
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Table VTI. Resulta of Multitasking the MTFExamples onthe KBM3O9O/2OO..—

A. Example 1

CPU Time (s) Wall Clock (S) s-up

1 Task, 10000 repetitions 338.2 342.1 0.99
2 Tasks, 10000 repetitions 338.4 176.1 1.92

1 Task, 1000 repetitions 34.0 36.5 0.93
2 Tasks, 1000 repetitions 34.0 2033 1.67

1 Task, 100 repetitions 3.6 6.3 0.57
2 Tasks, 100 repetitions 3.6 4.9 0.73

—— —

B. Examp% 2

CPU Time (s) Wall (Hock (S) Speedup

1 Task, I(XK)O repetitions 27].~ 274.6 0.99

2 Tasks.

1 Task,
2 Tushs,

I Task,

2 Tasks, I(N) rcpttltions 2.8 4.4 0,64——. — .—. ._=. _==---- — ——— -—-..—- ——

10000 repetitions 271.0 143.3 1.89

1(XX) repetitions 27.2 30.13 0,90
1(MO rrpetitlons 27.2 17.3 1.57

100 repetitions 2.9 5,3 ().55

_-—______ ~_..=—-- ———.— .—— -______ ---—- .- .- - _ —.—...——.—.—. —— ----——-:--------- —-...———— —-. —
Tablr VIIL F~N Multitasking Speddups IBM 3090/400 and CRAY X-MP/48_—_-.-...—— .—— .—— ---— - —-— ..— .-— .— .—

s - lf ~ Spmq.... __3090~e!_k~__–” ._,. ..-... .-—----- ....— ----- .. . ...—.
1 ‘l-ask ().”7 1,(X)
2 Tasks l,NA 1.99
4 “rilsks 3.17 3.71..=—e..—s .= -- .=,.=.-.= =.---..-: =— - .. ----,= - - ..... -----. ~=..= —-..--—_-——-.-——.—-— .- .-.——


